Misbehavior Detection Scheme In Delay Tolerant Networks Using Itrust

J.Keerthana¹, Mrs.A.Lavanya²

¹ M.Phil (Research Scholar), Kamban College of Arts and Science for Women, Thiruvannamalai. ² Hod Department of Computer Science, Kamban College of Arts and Science for Women, Thiruvannamalai.

Abstract: The Delay/Disruption Tolerant Networks (DTNs) are affected by the malicious and selfish behavior of the nodes. This misbehavior detection in the networks with specific characteristics is a challengeable issue. We propose, iTrust, a misbehavior detection scheme to provide efficient trust establishment in the networks. The iTrust scheme works similar to the inspection game, with a trusted authority in it. The TA (trusted authority) finds all the information from the nodes periodically to alert them. This scheme runs on the game theory model. The proposed work is the basic iTrust mechanism which is secured and trust worthy.

Keywords: Misbehavior detection, Security, Inspection Game, Incentive scheme, Delay Tolerant Networks.

I. Introduction

The transmission in the delay tolerant Networks get troubled with continuous network disconnectivity and many other routing problems. The message propagation process in the delay tolerant networks happens as "Store-Carry-and-Forward" method. In this method, each node enters all these levels during its message transmission. The node stores the message at first in its buffer for a time period till it finds the next right hop to send, it carries the message to the next hop and forwards it.

In DTNs, a node could misbehave probably in two ways, a malicious and selfish behavior. A malicious node is one which drops the packets intentionally into the wrong router. They would launch the attacks, by not forwarding the messages though it has enough buffer and the capacity. A selfish (rational) node is one which does not want to forward the messages to other nodes wontedly. It wants to maximize its own benefits. However, these misbehavior nodes cause threats to the network performance. The packet delivery rate and other routing, message transmission problems cause the DTNs to low performance. Henceforth, a misbehavior detection scheme is highly desirable to overcome the problems in the DTNs.

II. Proposed Work

In this paper, we propose iTrust, a misbehavior detection scheme, for secure DTN routing towards efficient trust establishment. The basic idea of iTrust is introducing a periodically available Trusted Authority (TA) to judge the node's behavior based on the collected routing evidences and probabilistically checking.

Trusted authority

TA works just similar to the inspection game, a game theory model. In the inspection game theory, a inspector with number of inspectee will be present and the inspector verifies the inspectee if he is following the legal rules or not. The inspectee may try to violate the rules by not following them. The inspector checks on the inspectee and punishes him to discourage the misbehaviors in the game.

The similar process is followed in the DTNs, the trusted authority (TA) as the inspector and the nodes as the inspectee. The TA will check on the nodes periodically using the history from the nodes. iTrust introduces a periodically available TA, which could launch the misbehavior detection for the target node and judge it by collecting the history evidence.

The working model of iTrust scheme with TA can be summarized as follows:

- First, a general misbehavior detection framework is introduced with collecting the evidences of history from the nodes.
- Second, the misbehavior detection scheme by adopting the inspection game model is followed.

III. The Proposed Basic Itrust Scheme

The iTrust scheme works with the Trust Authority (TA) which follows the inspection game theory for misbehavior detection in delay tolerant networks. The basic iTrust scheme has two phases, routing evidence generation phase and routing evidence auditing phase.

Fig: 1 The basic architecture of the iTrust Misbehavior detection scheme

1.Routing Evidence Generation Phase

In this phase, the Trusted Authority (TA) generates evidences from all the nodes in the network. This phase contains three-steps, using this we could find the malicious node easily. This Three-step process in this phase is to make the procedure as simple.

Delegation Task Evidence

Now, if a source node S has to send a message M to the destination D. We assume that the forwarded message has to be stored in some intermediate node N. Here, source S generates a delegation task evidence to say that a new task has been delegated from S to N.

The delegation task evidence is used to record the number of tasks assigned from the upstream nodes to the lower stream nodes. During the audit phase, the trusted authority collects this delegation task evidences from the upstream nodes.

> Forwarding History Evidence

Suppose, J is another intermediate node after node N. Node N has to forward the message M to node J after checking its availability. Node J generates the forwarding history evidence on node N, indicating that node N has successfully completed its task.

The forwarding history evidence, the tasks generated by the delegation task evidences are attained.

> Contact History Evidence

A new contact history will be generated when the two nodes meet to forward a message. Say, node N and node J meet to forward message M. Node N generates a contact history evidence.

In the audit phase, node N submits the contact history evidence showing all the contacts it has during the process of forwarding the message M. In this step, the malicious and selfish nodes can be easily detected, as the nodes which are in contact history and does not participate in forwarding message are considered as malicious and selfish nodes.

2. Routing Evidence Auditing Phase

In the auditing phase, trusted authority (TA) will request all the nodes to send their history. To check if a node has misbehaved in the network or not, TA request for the history of all the nodes on the suspected node. This misbehavior detection procedure is as follows:

> An honest data forwarding with sufficient contacts

A node forwards the data honestly without dropping it in wrong node. This phase shows that, honest data forwarding with sufficient contacts will forward data to next hop successfully without misbehaving.

> An honest data forwarding with insufficient contacts

A node would misbehave here due to lack of contacts. The node may not find the next hop to forward the data, as the node has dead or discarded from the network. Network connections, network environment are also the problems in failure of finding the contacts to forward the data.

> A misbehaving data forwarding with/without sufficient contacts

Nodes which are malicious and selfish fall under this category. These type of nodes does not forward the data though they have sufficient contacts. Malicious nodes drop the data into wrong contact wontedly.

IV. Operations In The Itrust Scheme

iTrust, a misbehavior detection mechanism in delay tolerant networks with trusted authority (TA) in it is inspired by the inspection game, a game theory model.

Nodes

From the figure we see that, nodes are the intermediate nodes which are forwarding the message from source to destination. Any node could misbehave at any time.

Fig: 2 Operations in the basic iTrust Scheme

Source

Source is the node that generates a message that to be transmitted to the destination. In this framework, the destination is fixed. The message generated by the source should reach destination from passing through all the nodes.

Destination

The message reaches the final node is destination.

Trusted authority (TA)

The misbehavior detection scheme completely depends on the TA. TA verifies all the nodes with the inspection game model.

V. Conclusion

In this paper, we propose a misbehavior detection scheme (iTrust), inspired with the inspection game. We have focused in detecting the misbehaving node in the network mostly. Our future work will focus on the process of reducing the transmission overhead incurred by misbehavior detection.

References

- Haojin Zhu, Suguo Du, Zhaoyu, Mianxiong Dong, Zhenfu Cao, "A Probablistic Misbehavior Detection Scheme toward Efficient Trust Establishment in Delay- Tolerant Networks," vol.25, No.1, January 2014.
- [2]. Q. Li, S. Zhu, and G. Cao, "Routing in Socially Selfish Delay-Tolerant Networks," Proc. IEEE INFOCOM '10, 2010.
- [3]. B.B. Chen and M.C. Chan, "Mobincent" A Credit-Based Incentive System for Mobile Ad-Hoc Network," Proc. IEEE INFOCOM"10, 2010.
- [4]. W. Gao and G. Cao, "User-Centric Data Dissemination in Disruption-Tolerant networks," Proc. IEEE INFOCOM '11, 2011.
- [5]. H. Zhu, X. Lin, R. Lu, P.-H. Ho, and X. Shen, "SMART: A Secure Multilayer Credit-Based Incentive Scheme for Delay- Tolerant Networks," IEEE Trans. Vehicular Technology, vol. 58, no. 8, pp. 828-836, 2009.

One Day National Conference On "Internet Of Things - The Current Trend In Connected World" 35 | Page NCIOT-2018

- [6]. R. Lu, X. Lin, H. Zhu, and X. Shen, "Pi: A Practical Incentive Protocol for Delay Tolerant Networks," IEEE Trans. Wireless Comm., vol. 9, no. 4, pp. 1483-1493, Apr. 2010.
- [7]. F. Li, A. Srinivasan, and J. Wu, "Thwarting Blackhole Attacks in Disruption-Tolerant Networks Using Encounter Tickets," Proc. IEEE INFOCOM '09, 2009.
- [8]. E. Ayday, H. Lee, and F. Fekri, "Trust Management and Adversary Detection for Delay-Tolerant Networks," Proc. Military Comm. Conf. (Milcom '10), 2010.
- [9]. Q. Li and G. Cao, "Mitigating Routing Misbehavior in Disruption Tolerant Networks," IEEE Trans. Information Forensics and Security, vol. 7, no. 2, pp. 664-675, Apr. 2012.